Different anesthetic sensitivities of skeletal and cardiac isoforms of the Ca-ATPase.
نویسندگان
چکیده
We have previously shown that low levels of the volatile anesthetic halothane activate the Ca-ATPase in skeletal sarcoplasmic reticulum (SR), but inhibit the Ca-ATPase in cardiac SR. In this study, we ask whether the differential inhibition is due to (a) the presence of the regulatory protein phospholamban in cardiac SR, (b) different lipid environments in skeletal and cardiac SR, or (c) the different Ca-ATPase isoforms present in the two tissues. By expressing skeletal (SERCA 1) and cardiac (SERCA 2a) isoforms of the Ca-ATPase in Sf21 insect cell organelles, we found that differential anesthetic effects in skeletal and cardiac SR are due to differential sensitivities of the SERCA 1 and SERCA 2a isoforms to anesthetics. Low levels of halothane inhibit the SERCA 2a isoform of the Ca-ATPase, and have little effect on the SERCA 1 isoform. The biochemical mechanism of halothane inhibition involves stabilization of E2 conformations of the Ca-ATPase, suggesting direct anesthetic interaction with the ATPase. This study establishes a biochemical model for the mechanism of action of an anesthetic on a membrane protein, and should lead to the identification of anesthetic binding sites on the SERCA 1 and SERCA 2a isoforms of the Ca-ATPase.
منابع مشابه
An autoinhibitory peptide from the erythrocyte Ca-ATPase aggregates and inhibits both muscle Ca-ATPase isoforms.
We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its dif...
متن کاملCa-ATPase in Cardiac Sarcoplasmic Reticulum
We have studied the effects of the local anesthetic lidocaine, and the general anesthetic halothane, on the function and oligomeric state of the Ca-ATPase in cardiac sarcoplasmic reticulum (SR). Oligomeric changes were detected by timeresolved phosphorescence anisotropy (TPA). Lidocaine inhibited and aggregated the Ca-ATPase in cardiac SR. Micromolar calcium or 0.5 M lithium chloride protected ...
متن کاملDifferential effects of general anesthetics on the quaternary structure of the Ca-ATPases of cardiac and skeletal sarcoplasmic reticulum.
The effects of the general anesthetics hexanol, halothane, and diethyl ether on Ca-ATPase activity and on the oligomeric state of the Ca-ATPase of sarcoplasmic reticulum (SR) from cardiac and skeletal muscle were investigated. The effects of these general anesthetics on Ca-ATPase activity were similar in cardiac and skeletal SR and were characterized by stimulation of Ca-ATPase activity at lowe...
متن کاملIdentification, kinetic properties and intracellular localization of the (Ca(2+)-Mg2+)-ATPase from the intracellular stores of chicken cerebellum.
The microsomal fraction of chicken cerebellum expresses a large amount of Ca(2+)-ATPase (105 kDa), which is phosphorylated by ATP in the presence of Ca2+. The Ca(2+)-ATPase activity is highly sensitive to temperature and to the presence of detergents. This ATPase has kinetic properties similar to those of chicken skeletal-muscle sarcoplasmic reticulum, as (i) it is activated by low (microM) and...
متن کاملNeuregulins Response to Exercise: a Mini Review
The Neuregulin is a member of the epidermal growth factors (EGF) family of receptor kinases, was originally identified as the product of the transforming gene derived from chemically induced rat neuroblastoms. A variety of different protein isoforms are produced from single Neuregulin gene. Four distinct vertebrate gene encode Neuregulin, prosaically named NRG1, NRG2, NRG3, and NRG4. Most of bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 29 شماره
صفحات -
تاریخ انتشار 1999